Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(37): 33380-33391, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744865

RESUMO

The NiO-CNT and NiO-Fe-CNT composites that have been prepared from waste high density polyethylene plastic and their carbon nanotube (CNT) quality-dependent supercapacitance tuning have been reported here. Multiwalled CNT (MWCNT) formation has been confirmed from TEM and Raman spectra with an ID/IG ratio of 0.77, which stands for high graphitization. The specific surface area (SSA) of MWCNTs in the NiO-Fe-CNT composite was 87.8 m2/g, while in the NiO-CNT composite, it was 25 m2/g. NiO-Fe-CNT displayed higher specific capacitance and energy density (1360 Fg-1 and 1180 W h kg-1) than NiO-CNT (1250 Fg-1 and 1000 W h kg-1), which may be due to the presence of higher-quality MWCNTs in the NiO-Fe-CNT composite. NiO-Fe-CNT displayed higher contributions of electric double-layer capacitor (59%) behavior compared to NiO-CNT (38%) and represented a hybrid supercapacitor. NiO-Fe-CNT also displayed a capacitive retention of 96% after 1000 charge-discharge cycles. Furthermore, studies in acidic electrolytes revealed higher performance of NiO-Fe-CNT than NiO-CNT, displaying specific capacitances of NiO-Fe-CNT to be 1147 Fg-1 in 2 M H2SO4 and 943 Fg-1 in 2 M HCl. It has been qualitatively explored that the quality of CNTs, SSA, and quantum confinement effects in the composites may be the factors responsible for the performance difference in NiO-Fe-CNT and NiO-CNT. The present work is geared toward the low-cost fabrication of high-quality CNT composites for supercapacitors and energy storage applications. The present work also contributes quantitatively to the understanding of CNT quality as an important parameter for the performance of CNT-composite-based supercapacitors.

2.
RSC Adv ; 10(59): 35619-35635, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35517071

RESUMO

Li+ incorporated tunable Y2O3:Eu3+ red-emitting nanophosphors were synthesized using a wet chemical method. The effect of Li+ on structural and luminescence properties of the nanophosphors were studied in detail. The structural results exhibited that nanophosphors have a body-centered cubic (I) phase with point group symmetry m3̄. No additional impurity peaks were observed within the range of the XRD pattern due to the Li+ ion. FTIR spectra reveal the formation of the pure and crystalline structure of the nanophosphors. TEM results show the prepared nanophosphors were highly crystalline and polycrystalline in nature. PL studies show the highly enhanced emission band due to the flux effect, greatly improved crystallinity caused by the Li+ ion, and the different excitation wavelengths. The most intense luminescence band was observed at 612 nm for red emission ascribed to the 5D0 → 7F2 transition of Eu3+ ion upon 254, 393, and 465 nm excitations in the C 3i and C 2 symmetry site of Y2O3 respectively. The highly enhanced emission band was observed under excitation at 254 nm and is 6.9 and 3.67 times higher than the emission band excited at 393 and 466 nm, respectively. The average lifetime also varies with different concentrations of Li+ ions. The chromaticity color coordinates, CCT values, were tuned in the red region of the color space. Hence, the results indicate that the prepared nanophosphor can be used as a red component to construct the white light for light-emitting diode applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...